
BioE 1586/2186 BCI Theory Monica Liu

1 Introduction

Brain-computer interfaces (BCIs) transform neural activity into a meaningful action on the
environment, whether via a robotic arm or other user interface. Here, we will go over some
simple ways to turn recorded neural activity into movement.

Figure 1: BCI target reaching task

Suppose we implanted an electrode array into the
primary motor cortex (M1) of a monkey and isolated
two neurons. We then recorded the activity of these two
neurons as the monkey made arm reaches to targets at
different positions around a screen. Now, we want to
build a BCI controller using these two neurons to allow
the monkey to move a cursor to either a left target or
a right target. How do we determine which target the
monkey is moving towards based on the activity of these
two neurons?

One way we can “decode” the intended target from
the monkey’s neural activity is to look at the firing rate

of individual neurons. As the monkey makes reaches in different directions, we record the
response of each single neuron. Using these responses, we can plot a tuning curve for each
neuron. Then, given an instantaneous firing rate for each neuron, we can reference the tuning
curves of each neuron to make a guess as to which target the monkey is trying to reach.

Angle(π)

F
ir

in
g

R
at

e

Left Right

0 0.5 1 1.5 2

25

75
Neuron 1
Neuron 2

Figure 2: Tuning curves of two neurons

For example, suppose the tuning curves
for the two neurons in our monkey are shown
in Figure 2. If we only know that the firing
rate of neuron 1 is 75 spikes/s, the monkey
could be moving to the left or to the right.
However, if we also know that the firing rate
of neuron 2 is 25 spikes/s, then we know that
the monkey is moving towards the left tar-
get. Similarly, when neuron 2 is firing at 75
spikes/s and neuron 1 is firing at 25 spikes/s,
the monkey is moving towards the right tar-
get. Thus, for our BCI controller, we can say

that every time we observe (Neuron 1, Neuron 2) activity of (75, 25), the cursor should move
to the left target, and the cursor should move to the right target when we observe (Neuron
1, Neuron 2) activity of (25, 75). While this is straightforward for two targets, how do we
generalize this to three or more targets?

As we increase the number of targets the monkey is reaching towards and the number of
neurons we record from, we need scalable and generalizable ways to decode the monkey’s reach
direction from neural activity. In particular, the goal of using machine learning algorithms for
BCI control is to make predictions of intended outcome when we see neural activity that we
have not previously observed. Our goal is to make these predictions as accurately as possible
using data we have seen before. We will first examine how to predict the intended target from
neural activity through K-means clustering, and then look at how we can make interpreting
the activity of large populations of neurons tractable via principal components analysis.

1

BioE 1586/2186 BCI Theory Monica Liu

2 K-Means Clustering

The purpose of K-means clustering is to classify each observed data point into one of K classes.
In the BCI decoding example described above, we want to use the observed neural activity of
neuron 1 and neuron 2 to determine which target, left, or right, the monkey wants to reach
towards. Rather than looking at the tuning curves of neuron 1 and neuron 2 separately, we can
jointly view the activity of neuron 1 and neuron 2 as two axes in neural space.

New Point

Neuron 1

N
eu

ro
n

2

Left
Right

Figure 3: Firing rate on reach trials

Figure 3 shows the activity of neuron 1 and neuron
2 as the monkey makes reaches to the left and right.
We want to build a BCI decoder to predict reach di-
rection from neural activity, and we observe the firing
rate combination represented by “New Point”. Which
target do we assign it to? The simplest and most intu-
itive decision would be to assign our new point to the
closest cluster, which is exactly what we do in K-means
clustering.

K-means clustering is a two-step iterative algo-
rithm. To initialize K-means, we create a cluster center
for each class k (left and right reaches). Then, we assign
each data point to a cluster (we label each joint firing
rate as a leftward or rightward reach). Then, we update
our cluster centers to be the mean of all points assigned
to that class (mean of all joint firing rates assigned to
left or right reacahes). These latter two steps (cluster assignment and update) are repeated
until each point is assigned to the closest cluster and the cluster means are not changing (Fig-
ure 4). The iterative update process becomes the basis for the expectation-maximization
algorithm (EM-algorithm). K-means is a special case of EM which is guaranteed to converge
to a local (not global!) optimum.

Here is an example where we have 5 data points and 2 classes (k = 1 and k = 2). We can view
k = 1 as a left reach and k = 2 as a right reach:

5 5.5 6 6.5 7
3

3.5

4

4.5

5
x1

x2

x4

x5
x3

µ1

µ2

µ1

µ2

µ1

µ2

Neuron 1

N
eu

ro
n

2 Data Point k = 1 k = 2

x1 1, 1 0, 0
x2 1, 1 0, 0
x3 0, 0 1, 1
x4 0, 1 1, 0
x5 0, 0 1, 1

Figure 4: K-Means in action

2

BioE 1586/2186 BCI Theory Monica Liu

Expectation-Maximization (EM) Algorithm:
N datapoints, K classes (or targets)

0. Initialize the means for each cluster, µ1...µk.

1. Assign each data point xn to the class with the closest mean: (E-step)

rnk =

1 if k = arg min
j
‖xn − µj‖2

0 otherwise

2. Set µk equal to the mean of all the data points assigned to clluster k: (M-step)

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

3. Iterate over steps 1 and 2 until convergence (means and cluster assignments stop changing).

rnk is a vector of length K for data point xn. It has a 1 in the kth position if xn is assigned
to class k, and 0 everywhere else. Each value in the table corresponds to the rnk value for that
data point on each iteration.

2.1 An Alternate Perspective on K-Means

Another way to think about k-means clustering is to think of it as trying to find clusters such
that the points within a cluster are closer together than points outside of the cluster. We can
take this approach to optimize a cost function, where our cost is the sum of inter-point distances.

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖2

This cost function is the sum of the distance between each data point xn and the cluster it
was assigned to. J is lower when points assigned to a cluster k are closer to the cluster mean
µk, and large when points assigned to a cluster k are far from µk. Using this equation in the
EM-algorithm:

1. E-step: {rn1 . . . rnk} is a set of (k−1) zeros and a single 1. This is essentially a vector for
each data point xn with length k. It contains zeros for each class k that point xn is not
assigned to, and a 1 in the class k that xn is assigned to. This is a one-hot encoding
vector. We want to minimize j with respect to rnk for each data point xn separately.
Thus, for each xn, we assign:

rnk =

1 if k = arg min
j
‖xn − µj‖2

0 otherwise

This is the same equation as the E-step from earlier.

3

BioE 1586/2186 BCI Theory Monica Liu

2. M-step: We want to find the µk that minimizes J . Since J is quadratic (and concave),
we can take the derivative of J and set it equal to 0 to optimize for µk.

dJ

dµk
=

d

dµk
(

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2) = −2
N∑

n=1

rnk(xn − µk) = 0

N∑
n=1

rnkxn =

N∑
n=1

rnkµk

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

This is the same update equation for the mean that we came up with earlier, but optimizing
over the cost function provides a more rigorous mathematical guarantee of optimality.

2.2 Choosing K

Sometimes, as in the case of decoding reaches towards two targets, we have a good idea what
K should be. In some applications of k-means (such as spike sorting), however, what K should
be is not always clear. So how do we choose K?

Let’s start by examining the extremes. On one end, we can say K = 1, and assign all of
our data points to one cluster. This instance of K-means is very simple, but probably not very
accurate. At the other end of the spectrum, we can say K = N , where N is the number of data
points. This means that every data point will be assigned to its own cluster. The accuracy
of this instance of K-means on data that we have seen before is going to be 100%. However,
this instance of K-means does not generalize well to previously unseen data. The “right K” is
somewhere between 0 and N .

In most machine learning methods, we want to fit the parameters of our model to some
data that we call the training data, but to estimate the generalizability of our model, we
see how well it performs on data that it hasn’t seen before. This dataset is the test data,
and we use it to evaluate model performance. So if we are using K-means as our machine
learning model, we might train N different models of K-means where K = 1...N . Then, when
we plot K vs. model accuracy for each model, we would expect to see a curve like Figure 4.

1 2 3
. . .

N
0

0.2

0.4

0.6

0.8

1

K

A
cc

u
ra

cy

Figure 5: Model accuracy as a function of K

Since the accuracy on the test data peaks at
K = 3, we would choose to classify our data
into 3 clusters in this instance. If there isn’t
enough data to split into training and test sets
and still get accurate estimates of model accu-
racy, we can use cross-validation. In cross-
validation, data are divided into folds of equal
size. One fold is left out as the test dataset,
and the model is trained on the remaining
folds. This process is then repeated with an-
other fold as the “held-out” test dataset and
all other folds as training data, until all trials
have been a part of the test dataset. This is
called leave-one-out cross validation and
allows us to both fit and test model accuracy
on a smaller dataset.

4

BioE 1586/2186 BCI Theory Monica Liu

3 Principal Components Analysis (PCA)

So far, we have operated under the assumption that we are recording from two neurons. What
if we have a lot more? What if we have 100? Can we still use k-means? We can, but it might
be slow. If we still want to cluster in 2 dimensions, how do we know which 2 neurons to pick?
Rather than clustering in a very high-dimensional neural space, can use principal components
analysis (PCA) to choose the dimensions of neural activity to cluster in. PCA is a dimension-
ality reduction technique, where the goal is to take M -dimensional data and project it into
a D-dimensional space such that D < M and the variance of the data is maximally preserved.

Let’s start with an example in two dimensions (M = 2):

0 2 4 6 8 10

0

2

4

6

8

10
Data

U1

U2

Figure 6: Principal axes of 2D data

We can project this data down to one
dimension (remember, D < M) using
PCA. PCA will find orthogonal axes cor-
responding to the dimension of greatest
variance. In our example, U1 is the
axis of greatest variance. U2 is an or-
thogonal axis to U1 that captures the
second-greatest amount of variance. To
reduce our 2D data to 1D, we would
find the value each data point takes on
U1, and throw out U2. This is be-
cause U1 captures more variation in the
data (i.e. the data are more spread
out along U1) than U2. How does PCA
find the axes of greatest variance of our
data?

We use the covariance matrix to estimate the spread of the data. This is the higher-dimensional
version of the variance that you may have seen in a statistics class:

S =
1

N

∑
n=1

N(xn − µ)(xn − µ)T , where µ =
1

N

N∑
n=1

xn

To find the axes of greatest variance, PCA takes the eigendecomposition of the covariance
matrix S, giving its eigenvalues and eigenvectors. What are eigenvectors and eigenvalues? An
eigenvector of a linear transformation is one in which the transformation is not rotated or
translated, only scaled. The eigenvalue is the amount of scaling along that eigenvector:

Av = λv

where v is the eigenvector of the linear transformation A and λ is the eigenvalue.

What does this mean in the context of PCA on neural data?
Eigenvectors are the directions of a linear transformation where the transformation is only
scaled. In PCA, we find the eigenvectors and eigenvalues of the covariance matrix.

• What’s the linear transformation in PCA?
The covariance matrix

5

BioE 1586/2186 BCI Theory Monica Liu

• How is the covariance matrix a linear transformation?
It scales or rotates the data (it smears it). For example, let’s say we have 3 points. If
I tell you the mean of the three points is 0, and the variance is 0, then our points look
something like this:

−1 0 1

µ = 0, σ2 = 0

Alternatively, if the mean of the points is 0 and the variance is 1, then our points probably
look something like this:

−1 0 1

µ = 0, σ2 = 1

As we can see, a nonzero variance spreads the data out along our axis. In multiple dimen-
sions, we need more numbers to explain how the data are spread out along multiple axes,
which we represent with the covariance matrix. So we can think of the covariance
matrix as a “smearing transformation” that smears the data away from its
mean.

By finding the eigenvectors and eigenvalues of the covariance matrix, we are finding the direcions
of greatest smearing of our data–the eigenvalues are how much our data are smeared along that
axis. Thus, the axis of greatest variance corresponds to the axis of “greatest smearing”—or the
eigenvector of the covariance matrix with the largest eigenvalue.

Mathematically, we write this as:

S = UΛUT , where U =

 | | . . . |
U1 U2 . . . UD

| | . . . |

 and Λ =


λ1 0

λ2

0
. . .

λD


such that λ1 > λ2 > · · · > λD

We can then project the mean-centered high-dimensional point (xn−µ) onto an eigenvector Ui

to find the low-dimensional point along that eigenvector that we’ll call zn:

zn = (xn − µ)T · Ui

The projection of xn onto Ui is defined as:

‖xn‖ cos θ =
‖xn‖‖Ui‖ cos θ

‖Ui‖
=
xTnUi

‖Ui‖

6

BioE 1586/2186 BCI Theory Monica Liu

U1

x1

x2

x3

x4
x5

z1

z2
z3

z4

z5

x1

x
2

Figure 7: Projection onto PC1

Figure 7 shows the reduction of our origi-
nal 〈x1, x2〉 data to coordinates on the U1

axis. The value of each data point on
U1 is indicated by the projection (dot prod-
uct) of the point onto U1. Thus, PCA
found this axis along which are data are most
spread out, and we transformed our data to
be along this axis rather than in the orig-
inal space. Before we use PCA, we sub-
tract the mean from our data so that the
lower-dimensional points are in Ui coordinates
and not in the original 〈x1, x2〉 coordinates.
In other words, mean subtracting the data
point will center the new points around 0 on
U1.

In summary, we’ve used PCA to take two-dimensional data down to one dimension. What if
we start off with 100-dimensional data? How do we choose D, the dimensionality of the lower
dimensional space? We look at the eigenvalues to tell us how much “smearing” or variance is
captured along a given axis. To capture all the variance in the data, we need all the eigenvalues
and eigenvectors. However, we can look at the eigenvalues to make our decision about D:

1. Plot the eigenvalues of the covariance matrix and look for an “elbow”

1 2 3
. . .

M

Dimension d

λ
i

2. Take the k eigenvalues that explain at least 90% of the variance

1 2 3
. . .

M

0

1

λi

%
V

ar
ia

n
ce

E
x
p
la

in
ed

Here we might pick D = 2 because most of the variance is explained by 2 eigenvalues. In
BCI decoding, we can think of the firing rate of each neuron as a single point in a space with
dimensionality equal to the number of neurons. Using PCA, we reduce the dimensionality of
the data to some manageable size while maintaining most of the information captured in the
neural activity.

7

BioE 1586/2186 BCI Theory Monica Liu

4 BCI Decoders in the Real World

So far, we have gone over how to predict target from firing rate: reduce the dimensionality of
recorded neural activity using PCA, then predict the target using K-means clustering in this
lower-dimensional space. In practice, predicting targets isn’t the most useful application of
a decoder—in real-world environments where BCIs are used to control prosthetic and robotic
limbs, there are dozens of possible objects or targets a person could be reaching for.

Most BCIs that are used for robot control typically record from populations of neurons
and decode the velocity of the movement. The key difference between these decoders and the
methods described here are that these real-world decoders require continuous estimation of the
velocity, rather than classification into a discrete target. Many of the principles that underlie
K-means and PCA are applicable to building BCI decoders in general. Broadly, we can split
BCI decoding into two steps: feature extraction (e.g. PCA) and decoding (e.g. K-means
clustering).

4.1 Feature Extraction

While PCA is a simple and easy way to extract structure in neural activity for decoding, it
makes strong assumptions about noise and variability in the data—more specifically, it assumes
that any variation in the data is signal and not noise. There are a lot of bells and whistles we
can attach to PCA to incorporate different forms of noise modeling.

Two key extensions of PCA are probabilistic principal components analysis (PPCA)
and factor analysis (FA). PPCA adds an isotropic noise model to PCA. In other words, each
low-dimensional factor zn could have given rise to a cloud of high-dimensional points. This
means that the projections from xn to zn are no longer orthogonal. Like PPCA, FA also adds a
noise model to PCA, but the key difference is that the noise model is anisotropic.Mathematically,
adding these noise models means that we can’t find closed-form solutions to the principal axes—
we need to use probability distributions and maximum likelihood estimation to optimize
for the principal axes.

4.2 Decoding

How do we go beyond target prediction to continuous velocity estimation? We need some
function that maps firing rates to velocity. The simplest instantiation of this is a linear mapping,
or an Optimal Linear Estimate (OLE) decoder. Essentially, we say that the velocity of the
robotic arm is a linear combination of the firing rates of our population of neurons:

v = Bx

Here, v is the velocity and x is the firing rate. B maps firing rates to velocity, and is estimated
from training data. B is estimated such that the predicted velocity v best matches the training
data velocity, using least squares regression.

As with PCA, we can build up a lot of extensions of this linear relationship between velocity
and firing rate. A commonly used extension is the Kalman filter. The Kalman filter adds a
noise estimate and time-dependence to the linear decoder by assuming that the current velocity
is a function of both the current firing rate and the previous velocity. Once again, incorporat-
ing noise estimates and prior states of the robotic arm mean that we need to generalize our
mathematical equations to probability distributions and find the most probable outcome of our
observations.

8

BioE 1586/2186 BCI Theory Monica Liu

5 Summary and Key Takeaways

BCI Decoders almost always involve two steps: 1) Feature extraction and 2) Decoding. PCA
is a method of feature extraction, and K-means clustering is a simple decoding method. Both
these methods can be expanded upon to build more sophisticated decoders.

In nearly all of these extensions, we take into account the probability of an output in response
to a given input. Thus, the underlying tenet of almost all machine learning algorithms is
maximum likelihood estimation. When we incorporate these probabilistic estimates into
our models, we get much more powerful and nuanced insights into the potential outcomes of
our observed data. While neither PCA nor K-means clustering incorporates these probabilistic
approaches, take Byron’s class (Neural Signal Processing) to get an in-depth look at these
approaches.

9

