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From encoding to decoding: predicting the stimulus from 
neural responses
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Gaussian tuning of a cortical (V1) neuron

If we observe the cell firing at 
52Hz, what is the most likely 
orientation of the stimulus 
being shown? 
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Gaussian tuning of a cortical (V1) neuron
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How certain are we?



Variability of neural responses influences decodability of 
the stimulus
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Measuring variability of neural responses: Fano factor
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Fano factor = 
Variance

Mean

= 1 for a Poisson process

Boardwork on Fano factor



Measuring variability of neural responses: Fano factor
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Fano factor = 
Variance

Mean

= 1 for a Poisson process

a

b
From which neuron, a or b, could we 
decode more reliably?

Coding breakout 1
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Gaussian tuning of a cortical (V1) neuron

If we observe the cell firing at 
20Hz, did the animal see -20o 
or + 20o? 



What can a population of neurons tell us that individual 
neurons cannot? 

Observed 
FR of Cell 1 With the tuning curve of a 

single neuron, some stimuli can 
be hard to distinguish
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What can a population of neurons tell us that individual 
neurons cannot? 

Observed 
FR of Cell 1

Observed 
FR of Cell 2

Observing the firing rate of a 
second neuron provides unique 
encoding for different stimuli at 
the population level

11



Recording from lots of neurons: Population recording 
technologies
● 1970s-’80s: Patch-clamp recordings of isolated single neurons by Sakmann & 

Neher
● 1980s-’90s: Michigan Probes and Utah arrays (~100s of neurons simultaneously)
● Currently: Neuropixels and more (~1000+ neurons)
● Calcium imaging
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What can a population of neurons tell us that individual 
neurons cannot? 

Observed 
FR of Cell 1

Observed 
FR of Cell 2

With many neurons, looking at 
individual tuning curves 
becomes intractable.

We can look at population 
activity in a high-dimensional 
“neural space” instead.
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Representing population activity in high-dimensional 
“neural” space
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Representing population activity in high-dimensional 
“neural” space
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Stimulus classification for populations of neurons

As with single neurons, we can record the 
population neural response over many trials.

However, we encounter the same problem: 
organisms don’t have time to trial average in 
real-life situations.
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Stimulus classification for populations of neurons

As with single neurons, we can record the 
population neural response over many trials.

However, we encounter the same problem: 
organisms don’t have time to trial average in 
real-life situations. 

Given a new firing rate pattern, how does the 
organism decide what stimulus is being 
shown?

Boardwork and Coding Exercise: Maximum 
likelihood estimation with multivariate 
Gaussians
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Newly observed 
firing rate pattern



Linear classification/decision boundaries
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Classification with multivariate Gaussians 
results in a linear decision boundary. 

Linear decision boundaries are hyperplanes 
in D-dimensional space. 

A hyperplane is defined as the set of all x 
such that 

y(x) = wTx + wo = 0

As we go from 2 classes to N classes, how do 
we scale the classification problem 
correspondingly? 



From classification to continuous decoding
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Brain-computer interfaces can be used to turn 
neural activity into movement. We want to be 
able to do more than classification here–we 
want to decode a continuous variable to 
enable smooth control of the end effector 
(robotic arm).  

Collinger et al., 2014

How do we get smooth decoding of a 
continuous variable like velocity of the 
robot arm with classification?



Continuous decoding with linear regression
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X Position (m)

Classifier for every reach direction? 
Discretization of velocity into very 
small bins? 



Continuous decoding with linear regression
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Our decoder is linear, so it takes the same form as a hyperplane:
y = wTx + w0

But instead of separating classes on either side of the line, it 
tells us how velocity maps to neural activity
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Continuous decoding with linear regression
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Continuous decoding with linear regression
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Our decoder is linear, so it takes the same form as a hyperplane:
y = wTx + w0

But instead of separating classes on either side of the line, it 
tells us how velocity maps to neural activity
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Coding breakout: linear regression



Summary: from encoding to decoding neural responses

● Neural responses vary across trials, and this variability influences how 
reliably we can decode from a neuron. Metrics like the Fano factor allow us 
to measure neural variability, but they’re not perfect. 

● Populations of neurons gives us improved decodablility by embedding our 
stimuli in a higher-dimensional space. Tools that work with one neuron also 
work with populations of neurons, but we need to think about “neural 
space” as opposed to single units. 

● Continuous decoding extends upon the decoding through classification to 
decoding through regression. Many modern methods for motor control 
focus on continuous decoding techniques. 
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